If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12t+4.9t^2-30.4=0
a = 4.9; b = 12; c = -30.4;
Δ = b2-4ac
Δ = 122-4·4.9·(-30.4)
Δ = 739.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-\sqrt{739.84}}{2*4.9}=\frac{-12-\sqrt{739.84}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+\sqrt{739.84}}{2*4.9}=\frac{-12+\sqrt{739.84}}{9.8} $
| 12t+4.9t^2+30.4=0 | | 9x+7=5-4 | | 4(10+b)=80 | | 20a=10 | | 40/100=25,20/x | | 8x+6=2(x-1) | | 7n+4=3+16 | | q-16=49 | | x^2+9=(x+3)(x-3) | | 5x5=35- | | 700-10x=200+10x | | x+3/2=2x | | x+20+3x+x+35=180 | | 5p^-37p=-42 | | 5p^-37=-42 | | 1.5x+x÷2=7.5 | | -15=2w-3 | | 3(6-3x)+2=-2x-1 | | P(x)=–0.25x^2+25.50x–180 | | 0.8x+0.7x=0.86x | | 0.8x+0.7x=0.86 | | -24+w+8÷=4 | | x^-3x+6=6 | | 23x+5=21x-1 | | 15/2x=180 | | -4=2+3v | | 0.02w²-0.3w-20=0 | | 0.02w²-0.3w=20 | | 4(w+8)=2w+44 | | -5v+19=-8(v+1) | | -2(w+2)=-4w-24 | | 2(y+6)+2y=-24 |